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Some results on worst case optimal algorithms and recent results of J. Traub, G.
Wasilkowski, and H. Woiniakowski on average case optimal algorithms are
unified. By the use of Housholder transformations it is shown that orthogonal
projections onto the range of the adjoint of the information operator are, in a very
general sense, optimal algorithms. This allows a unified presentation of average
case optimal algorithms relative to Gaussian measures on infinite dimensional
Hilbert spaces. The choice of optimal information is also discussed.

BACKGROUND AND SETTING

As the title suggests, orthogonal projections are indeed optimal algorithms.
For those who are familiar with the model of optimal estimation presented in
131, this is not surprising. The main contribution of this paper is to expand
the generality in which this fact holds true.

Our motivation comes from the recent paper of Traub, Wasilkowski, and
Wozniakowski [6 J. They present some new optimality properties of
orthogonal projections onto subspaces of finite dimensional Hilbert space X.
(In their terminology, these projections are called spline algorithms.) In this
paper, a substantial generalization of their result is given which is based on
two observations. The first is the use of generalized Householder transfor
mations and the second is the notion of unitary invariance. These ideas not
only unify the theory of worst case and average case optimal algorithms but
also apply to very general error criteria on spaces X which need not be finite
dimensional. They are applicable whenever the error criterion used satisfies
properties related to the well-known class of unitary invariant norms 14 J.
Moreover, when a unitary invariant norm is used to measure the error, as in
both worst case and average case models in Hilbert spaces, optimal infor
mation can also be obtained.

The specific questions we address below arise from a model of optimal
estimation in normed linear spaces presented in 131. To some degree, these
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ideas find their origin in what is sometimes called the hypercircle inequality.
This is a method which gives sharp error bounds for estimating a linear
functional of an unknown function when limited information is available
about the function. The setting for the hypercircle inequality is a Hilbert
space X (not necessarily finite dimensional) with a bounded linear operator I
mapping X onto Y. For simplicity, we assume that dim Y is finite, but this is
also not essential for the discussion in this section. Thus we may as well let
Y = R n and for our convenience later we use the usual inner product u . v =

L 7= 1 Ui V i for vectors u, v E Y. In the terminology of [3], I is an information
operator to be used in the following way: We wish to estimate Lx, where
x E X and L is a continuous linear functional on X when the observation
Ix = y is made about x. Generally we require more information about x to
assess the error of any estimator. In our case, this takes the form, x E K,
where K is the unit ball in X,

K = {x: Ilxll ~ 1}.

Thus the set of uncertainty in x is the hypercircle

H = {x: Ix = Ixo, Ilxll ~ I}

determined by any X o E X such that Ixo= y. This hypercircle has a
Chebyshev center given by QxoE H, where Q is the orthogonal projection of
X onto R(I*). The hypercircle H is taken by L into an interval and the
midpoint of this interval is LQxo• Hence a best estimator for Lxo is LQxo
and the error in estimation is given by

(see [2] for more details on these facts). The importance of this inequality
rests on the fact that it holds universally for elements in the hypercircle H
and that Qxo depends only on the data y (see below).

In [3], the following additional optimality property of Q was observed.
Let U be any linear operator mapping X into any normed linear space Z.
(Generally, when there is more than one norm considered, even on the same
space, we do not use any special notation to distinguish them.) We wish to
estimate Ux, given x E K and the information Ix. We call any mapping
A : I(K) ~ Z an algorithm. The algorithm A yields an estimate Alx for Ux.
Since all we know is that x E K the error in estimating with this algorithm is

E(A) = sup {II Ux -AIxll: x E K}.

An optimal algorithm A 0 minimizes this error over all algorithms, that is,

E(A o) = min{E(A): A}.
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It was shown in [3] that UQx = AoIx is an optimal algorithm. Moreover,
if

Y. '···'Yn EX,

then

where G=(Gij) is the Gramian matrix Gij=(Y;'Yj) and (y;@yJx=
Y;(Yj, x). Thus the optimal algorithm is given explicitly by

(1)

It should be emphasized here that Z does not have to be a Hilbert space.
In the following sections we provide improvements and refinements of not

only these results but also of those contained in [5,6].

AVERAGE CASE OPTIMALITY: THE FINITE DIMENSIONAL CASE

We begin our discussion of average case optimality by requiring that both
X and Z are finite dimensional Hilbert spaces. In this case, we measure the
error by means of a pair F = (J, dp), where f is a strictly increasing convex
and continuously differentiable function while dp is Borel measure on X. For
such a pair F, we define the F-error of A to be

EAA) = Jf(11 Ux -AIxI1 2
) dp(x).

x

We will always require that dp is unitarily invariant relative to the norm on
X. Thus

J h(Rx) dp(x) = J hex) dp(x),
x x

(2)

where R is any isometry relative to the norm on X and h is any p-integrable
function. An important example of such a measure is a Gaussian measure

dp(x) = exp(-llxI1 2
) dx.

Also, in what follows we do not distinguish between algorithms A; such that
A]I=A 2 I, a.e.

THEOREM 1. Under the above hypotheses on the pair F = (J, dp), A 0 is
the unique F-optimal algorithm.
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Proof Let A be any algorithm, then

Ep(A) = f f(II(Ux -Ao/x) + (Ao/x -A/x)11 2
) dl1(x).

x

Expanding the argument off and using its convexity we obtain

Ep(A) >t:5(?) +EAA 0) +f 1'(11 Ux -Ao/xlnIAo/x -A/xI1 2 dl1(x),
x

where Ao/x = Qx, Px = x - Qx,

t:5(?) = 2f 1'(11 UPxll 2)(UPx, ?(/x)) dl1(x),
x

and

?(/x) =Ao/x -A/x.

From this inequality the theorem will follow provided we can show
t:5(?) = O. To this end, we define R = Q - P. Note that R is an isometry such
that /R = / and PR = -Po Hence using the unitary invariance of dl1(x) we
have

t:5(?) = 2 r1'(11 UPRxn(UPRx, ?(/Rx)) dl1(x)
"X

= -t:5(?),

which completes the proof of the theorem.

The case f(t) = t of this theorem was proved by Traub, Wasilkowski and
Woiniakowski in [6] by a more complicated argument.

It is worth observing that this result can be improved, provided we are
willing to accept a data dependent hypothesis on dl1(x). Specifically, we have
in mind measures of the form g(x) dl1(x), where g(x) is invariant under the
particular isometry used in the proof. For instance, if g is the characteristic
function of the preimage under / of any subset of Y, the theorem remains
valid for the measure gdl1.

The generality of Theorem 1 also allows us to treat both restricted optimal
algorithms and optimal algorithms for inaccurate information operators.
Both of these possibilities were dealt with in [3 J for the worst case model. In
the first case, we suppose an algorithm is restricted to have its values in
some fixed subspace M of Z. Then the same proof shows that the unique
restricted optimal algorithm is PM UQ, where PM is the orthogonal projection
of Z onto M. In the second case, we suppose the exact information /x is not
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available, but rather an algorithm must use the inaccurate information
y = Ix - e. The requirements of Theorem 1 leads us to suppose that the
uncertainty in x and the data error are measured together by a measure dfJ.
which is unitarily invariant,

ff f(11 Ux - A (Ix - e)11 2
) dfJ.(x, e).

To apply Theorem 1 we should make the identification U(x,y) = Ux and
I(x,y)=Ix-y, for any (x,y) EXxY. Then it is an easy matter to see that,
when Xx Y has its natural cross product norm, the x component of the
orthogonal projection Q minimizes

over all u E X. From this observation it follows that the optimal algorithm is

A VERAGE CASE OPTIMALITY: INFINITE DIMENSIONAL CASE

In the past section, we heavily relied upon the use of unitarily invariant
measures. However, except for the existence of such a measure and its
invariance under the family of isometries (2), the finite dimensionality of the
underlying space was not used. We purposely presented our proofs in this
manner to allow for their immediate extension to infinite dimensions. Of
course, the existence of a unitarily invariant measure fJ. in this case becomes
less apparent.

When X is a separable Hilbert space and S is a positive definite self
adjoint, trace class operator then there is a Gaussian measure fJ. whose
covariance operator is S (Prohorov; see 11, p. 29]). When S is injective the
range of IS induces a Hilbert subspace of X, Xo = VS(X), with inner
product

(~SX, ~Sy)o = (x,y).

Then fJ. is easily seen to be unitarily invariant relative to X 0 [l]. For us, this
means that by restricting I and U to Xo our previous results immediately
extend to separable Hilbert spaces.

Since one of our goals is to show how worst case and average case
analysis can be unified, we next present a worst case result.
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WORST CASE OPTIMALITY

Letf(s, t) be any real-valued nonnegative function defined for s, t > O. We
assume for every t> 0, f(s, t) is nondecreasing and convex in s. We define
the j-error of A for estimating U as

EJA) = sup{fOI Ux -A/xii, flxll): x EX}. (3)

Note that in (3) we take the supremum over all x E X rather than on K as in
the introduction. To specialize to that case we choosef(s, t) = sit.

THEOREM 2. Suppose f(s, t) is a real-valued nonnegative function
defined for s, t > 0 such that f(s, t) is convex and nondecreasing in s for
every t. Then A 0 defined by (I) is an j-optimal algorithm.

Proof The method we use to prove this result is different than that
employed in Theorem 1. Here we follow the approach used in [3].

Let

e = sup {f(t II Uxll, t Ilxll): x E X,Ix = 0, t ~ I};

then we will show

e = EIA 0) = min {Ej,A) : A }.

Lower Bound

Let x be any element in X with Ix = 0 and suppose t ~ 1. Given any
algorithm A we have

f(11 U(tx) -A(O)II, Iltxll) <EjA)

and

fOI U(tx) +A(O)II, II txll) <Ej,A).

Since

til Uxll <: i II U(tx) + A (0)11 + ill U(tx) - A(O)II,

it follows that

f(t II Uxll, t Ilx II) <: Ej,A),

and so

e <: min {Ej,A) : A}.
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Upper Bound

Suppose A 0 is defined by (1), then UA oIx = UQx and

EjA o) = sup {f(11 UPxll, Ilxll): x EX},

107

where Px=x-Qx. Since IPx=O and Ilxll=tIIPxll, for some t;;:: 1 it is
clear that

and so the proof is complete.

MAIN POINT

We have seen above that both in the worst case and average case models
of optimal estiation the orthogonal projection onto the range of the adjoint of
the information operator leads to an optimal algorithm. The unifying feature
of both of these results is embodied in the following observation.

Let H be any nonnegative functional whose domain is all mapping from X
into Z. Suppose

(a) H(-U) = H(U).

(b) H( UR) = H(U) for all isometries R relative to some inner product
on X.

(c) H(i(U + V)) <; max(H(U), H(V)).

Then for any algorithm A, we use as before the isometry R = Q - P and
obtain

H(UP - AI) = H(UPR - AIR) = H(UP +AI).

Thus

H(UP) <; H(UP - AI)

for all A. The particular cases considered before were

H(U) = sup {f(11 Uxll, Ilxll): x EX},

= f f(11 Ux11 2
) d)l(x),

x

OPTIMAL INFORMATION

worst case,

average case.

We now turn our attention to an optimal choice for the information
operator I. This has been done for the worst case model in [3]. Let us now
consider the problem for the average case model.
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AVERAGE CASE OPTIMAL INFORMATION: THE FINITE DIMENSIONAL CASE

In this section, we restrict ourselves to f(t) = tP, p > I, and as before df.1 is
a unitarily invariant measure. For convenience we refer to the corresponding
F-error of an algorithm as the p-error.

Suppose now that Z is also a Hilbert space. For any bounded linear
operator T: X -4 Z we define

1/2p

ITI = (L I(Tx, Tx)IP df.1(x) ). .

It is easily seen that '·1 is a unitarily invariant norm in the sense of [4 j,
i.e., ISTI = ITR I= ITI for any isometries S, R. Moreover, it is clear that

EF(A o) = IUPl2P

=IU-UQI 2P
,

and

According to [4 j, the lower bound can be evaluated from the singular value
decomposition of U. Thus expressing U* U as

(4 )

where Y~ ,... ,Y~ are the orthonormal column eigenvectors of U* U with
corresponding eigenvalues a I'"'' am ordered so that a I ) .•. ) am' (These are
called the singular values of U.) Then the lower bound above is achieved by
the operator

n
_ \' 0 0

Topt - ~ UYi @Yi'
i~ I

which gives us the inequality

Since Topt = UQopt, where

n
\' 0 0

QoPt=~Yi0Yi'
;oc-t

we finally obtain mini {E[(A o; I)} = E[(A opt , I opt )
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for

and

lopt(x) = ((y7, x ),..., (y~, x)).

We state these observations below as

109

(5 )

THEOREM 3. Suppose U*Uy~=ajY~, al~'" ~am~O and (yj'Yj)=
oij' Then an optimal linear information operator for estimating Ux relative to
the p-error

Ep(A) = f IIUx-A(lx)11 2P d,u(x)
x

is given by (6) and the corresponding unique optimal algorithm by (5).

The optimality of lopt was known in the worst case model whenf(t, s) = t.
This is a standard consequence of the theory of n-widths in Hilbert spaces
and is explained in [3]. In the context of average case optimality the above
remarks suggest a notion of average n-width. Suppose X is a normed linear
space, and d,u(x) a Borel measure defined on X. We define the pth average n
width of the set UK relative to d,u as

d~(UK) = inf) (L dist(Ux, XnY d,u(x)) tiP: X n~ X, dim XII = n ( ,

where

dist(x, Xn) = inf{llx - yll: Y E X nf·

When p ~ 2, X is a Hilbert space and d,u a unitarily invariant measure, our
previous remarks can be used to easily identify d~ because

dist(Ux, Xn) = II U * x - U * Qxll,

where Q is the orthogonal projection of X onto X n' It would be interesting to
determine d~(UK) in other cases.
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